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Abstract 

Nowadays, food and pharmaceutical sector require the employment of 
materials that possess essential qualities, including biocompatibility, 
stability, non-toxicity, and, where applicable, controlled release 
capabilities. Hydrogels are peculiar macromolecules, characterized by 
a polymeric matrix, an interstitial fluid and, eventually, some ionic 
species. There is an obvious interest in natural polymer-based 
hydrogels. Polysaccharide are gaining attention as hydrogel forming 
biopolymers, as they are synonyms of biocompatibility, and water 
absorbtion capacity. 
Pectin is a natural water-soluble polysaccharide that can be found in 
plant cells. It consists of linear chains of 1-4-D-galacturonic acid 
residues that contain carboxyl groups. Low methoxy pectin (degree of 
esterification <50%) is capable of forming insoluble hydrogels, such as 
calcium pectinate, when the acid chains are crosslinked with a divalent 
cation, calcium, which can be used, for instance, for nutraceutical 
molecules delivery purpose. Calcium pectinate(CaP) hydrogels are 
known to be nontoxic and can be degraded by colonic bacteria, being 
able to remain into the upper gastrointestinal tract. It has been 
investigated as a carrier for controlled drug release and the protection 
of drugs against gastric environment. Specific properties of these gels 
based on new models and their applications in functional food structure 
design deserve a further study. 
Calcium Pectin Hydrogels(Ca-PEC) can be characterized as physically 
cross-linked network, whose swelling behavior is not fully understood, 
despite its significance in many applications. In simulating the swelling 
response of such systems, the experiments are of high importance 
because of two reasons: finding the necessary parameters for 
simulation; verification of the theory and numerical implementation. 
One of the two external stimuli that can alter the swelling response of 
Ca-PEC hydrogels, are the pH and ionic strength of the medium these 
gels interact with. pH is a very important factor in studying pectin gels 
because these are always used for food and pharmaceutical products 
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with different pH values. pH can alter the dissociation of carboxylic 
groups in pectin thus its binding with calcium ions. On the other hand, 
many studies have also investigated the effects of pectin on the in vitro 
absorption of minerals, such as calcium, zinc, magnesium and iron. 
Thus, it is essential to discuss the influence of the ionic strength on the 
general behavior in solution as ions could potentially replace the bound 
calcium, leading to structure weakening and loss of stability. 
Given that swelling properties of hydrogels are important factors for 
any application, aim of this thesis project is to study the swelling 
behavior of calcium pectin gel, obtained through ionotropic gelation, in 
aqueous solutions. Dynamic swelling experiment were carried out with 
a gravimetric method. Swelling kinetics were well fitted by a saturation 
growth model. Equilibrium swelling response was analysed as function 
of the external medium pH and ionic strength. As an additional tool to 
have more insights about the pH role on the gel diffusive properties in 
solution, EDTA complexometric titration was performed to monitor 
calcium ions release in solution Unconfined compression tests were 
performed to characterize the main mechanical properties of the 
prepared hydrogels. In the end, the prepared pectin hydrogels did not 
show pH responsive properties, in classical sense and this is more 
typical of chemically crosslinked systems with superabsorbent 
properties. Ionic strength contributed to swelling through a general 
polyelectrolyte behavior. The findings can be further exploited for 
modelling purpose and formulating delivery systems with desired 
properties.  
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Chapter One 

Introduction 

In this chapter, a general description of 
polysaccharide-based hydrogels is 
presented. Pectin Hydrogels properties 
are highlighted. At the end of the chapter, 
after a review of the state of the art, the 
aims of this work are illustrated. 
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