Le pubblicazioni dei componenti del gruppo di ricerca.
2017
Bochicchio, Sabrina; Sala, Marina; Spensiero, Antonia; Scala, Maria Carmina; Gomez-Monterrey, Isabel; Lamberti, Gaetano; Barba, Anna Angela
On the design of tailored liposomes for KRX29 peptide delivery Journal Article
In: New Journal of Chemistry, vol. 41, no 19, pp. 11280-11290, 2017, ISSN: 1144-0546.
Abstract | Links | BibTeX | Tags: liposome, peptide
@article{Bochicchio2017b,
title = {On the design of tailored liposomes for KRX29 peptide delivery },
author = {Sabrina Bochicchio and Marina Sala and Antonia Spensiero and Maria Carmina Scala and Isabel Gomez-Monterrey and Gaetano Lamberti and Anna Angela Barba },
url = {http://pubs.rsc.org/en/Content/ArticleLanding/2017/NJ/C7NJ03115G},
doi = { 10.1039/C7NJ03115G},
issn = {1144-0546},
year = {2017},
date = {2017-12-01},
journal = {New Journal of Chemistry},
volume = {41},
number = {19},
pages = {11280-11290},
abstract = {The high interest in therapeutic peptides, due to the specificity of their mechanisms of action, has stimulated the research of new delivery strategies to overcome bioavailability problems concerning the use of peptides in their naked form. In particular, in this study, a novel small cyclic peptide, the KRX29, with a potential therapeutic effect on Heart Failure (HF) pathology, was encapsulated into large and unilamellar small vesicles (LVs, SUVs) by the thin film-hydration method followed by ultrasound assisted size reduction processes, generating loaded liposomes with nanometric sizes. Loaded and unloaded liposomes were produced exploring three different formulations by changing the charge ratio (-/+) between the anionic phosphatidylglycerol (PG) and the cationic KRX29 peptide. LVs and SUVs were designed using a 1:1, 7:1 and 13:1 (-/+) PG/KRX29 charge ratio and, for each formulation, the charge effect on liposomes morphology, size and zeta potential were analyzed together with peptide encapsulation performance, load, recovery efficiencies and stability through an analytical HPLC protocol purposely developed. Best results in terms of encapsulation in nanoliposomal formulation for KRX29 delivery, were achieved using a 13:1 (-/+) charge ratio (99 % in 35 nm SUVs). The influence of PG/KRX29 charge ratio on the recovery efficiencies was also investigated obtaining that the maximal peptide recovery from liposomes (81 \textendash 94 %) was achieved by using a 1:1 (-/+) charge ratio formulation and pure ethanol as solvent for the extraction.},
keywords = {liposome, peptide},
pubstate = {published},
tppubtype = {article}
}
Bochicchio, Sabrina; Lamberti, Gaetano; Barba, Anna Angela
Phenomenological and Formulation Aspects in Tailored Nanoliposome Production Book Chapter
In: Liposomes, Chapter 2, IntechOpen, 2017.
Abstract | Links | BibTeX | Tags: cell‐mimetic system, gene therapy, liposome, nanoliposomes delivery systems, nutraceuticals, personalized carriers, simil‐microfluidic approach, ultrasonic size reduction
@inbook{Bochicchio2017d,
title = {Phenomenological and Formulation Aspects in Tailored Nanoliposome Production},
author = {Sabrina Bochicchio and Gaetano Lamberti and Anna Angela Barba},
url = {https://www.intechopen.com/books/liposomes/phenomenological-and-formulation-aspects-in-tailored-nanoliposome-production},
doi = {10.5772/intechopen.68157},
year = {2017},
date = {2017-10-25},
booktitle = {Liposomes},
publisher = {IntechOpen},
chapter = {2},
abstract = {Liposomes as cell‐mimetic system have attracted wide attention of researchers in various branches of the drug delivery topic as they can be highly functionalized and personalized, thus solving the major drawbacks of bioactive molecules linked to their low stability, limited membrane permeability, short half‐life and low bioavailability. The development of sustainable processes able to produce ad hoc liposomes in a rapid manner through the use of not‐laboured techniques, avoiding drastic conditions, is of great relevance for the industrial sector. In this chapter, two novel liposome production processes, the ultrasound‐assisted thin‐film hydration and the simil‐microfluidic techniques sharing the same size reduction/homogenization preparative step, are presented. The phenomenological aspects involved in vectors constitution through the duty cycle sonication process (bilayer rupture/vesicles formation mechanisms) and through the simil‐microfluidic approach (intubated flows interdiffusion mechanisms) are described. Finally, two applications as case histories involving the use of the developed techniques for relevant classes of active molecule delivery are described. In particular, a pharmaceutical application concerns the encapsulation of short‐interfering RNA (siRNA) molecule, used for gene therapy, inside cationic nanoliposomes, and a nutraceutical application consists in the production of ferrous sulphate anionic liposomal formulations with improved features compared to those already present on the market.},
keywords = {cell‐mimetic system, gene therapy, liposome, nanoliposomes delivery systems, nutraceuticals, personalized carriers, simil‐microfluidic approach, ultrasonic size reduction},
pubstate = {published},
tppubtype = {inbook}
}
Bochicchio, Sabrina; Dalmoro, Annalisa; Recupido, Federica; Lamberti, Gaetano; Barba, Anna Angela
Nanoliposomes Production by a Protocol Based on a Simil-Microfluidic Approach Book Chapter
In: Piotto, Stefano; Rossi, Federico; Concilio, Simona; Reverchon, Ernesto; Cattaneo, Giuseppe (Ed.): Chapter 1, pp. 3-10, Springer International Publishing AG 2018, 2017, ISBN: 978-3-319-62026-8.
Abstract | Links | BibTeX | Tags: liposome
@inbook{Bochicchio2017b,
title = {Nanoliposomes Production by a Protocol Based on a Simil-Microfluidic Approach},
author = {Sabrina Bochicchio and Annalisa Dalmoro and Federica Recupido and Gaetano Lamberti and Anna Angela Barba},
editor = {Stefano Piotto and Federico Rossi and Simona Concilio and Ernesto Reverchon and Giuseppe Cattaneo},
url = {https://link.springer.com/chapter/10.1007/978-3-319-62027-5_1},
doi = {10.1007/978-3-319-62027-5_1},
isbn = {978-3-319-62026-8},
year = {2017},
date = {2017-08-01},
pages = {3-10},
publisher = {Springer International Publishing AG 2018},
chapter = {1},
series = {Lecture Notes in Bioengineering book},
abstract = {In this work a protocol based on the microfluidic principles has been developed and applied to produce nanoliposomes. The protocol basically consists in the realization of a contact between two flows, lipids/ethanol and water solutions, inside a tubular device where interdiffusion phenomena allow the formation of lipid vesicles. Effects of solutions flow rates and lipids concentrations on size and size distribution have been investigated. Moreover, ultrasonic energy was used to enhance homogenization of the hydroalcoholic final solutions and to promote the vesicles size reduction. By this protocol a massive output has been achieved; increasing the ratio between the water volumetric flow rate to the lipids-ethanol volumetric flow rate the liposomes dimension decreases; at equal flow rates, when the lipids concentration increases also the liposomes size has been observed increasing. },
keywords = {liposome},
pubstate = {published},
tppubtype = {inbook}
}
2015
Barba, Anna Angela; Lamberti, Gaetano; Sardo, Carla; Dapas, Barbara; Abrami, Michela; Grassi, Mario; Farra, Rossella; Tonon, F; Forte, Giancarlo; Musiani, F; Licciardi, M; Pozzato, G; Zanconati, F; Scaggiante, Bruna; Grassi, Gabriele; Cavallaro, Gennara
Novel Lipid and Polymeric Materials As Delivery Systems for Nucleic Acid Based Drugs. Journal Article
In: Current drug metabolism, vol. 16, no 6, pp. 427-452, 2015, ISSN: 1389-2002.
Abstract | Links | BibTeX | Tags: Biopolymer, Drug Delivery Systems, liposome, Micro and Nano Vectors, nucleic acid based drugs
@article{Barba2015,
title = {Novel Lipid and Polymeric Materials As Delivery Systems for Nucleic Acid Based Drugs.},
author = { Anna Angela Barba and Gaetano Lamberti and Carla Sardo and Barbara Dapas and Michela Abrami and Mario Grassi and Rossella Farra and F Tonon and Giancarlo Forte and F Musiani and M Licciardi and G Pozzato and F Zanconati and Bruna Scaggiante and Gabriele Grassi and Gennara Cavallaro},
url = {http://benthamscience.com/journals/current-drug-metabolism/article/133927/},
doi = {10.2174/1389200216666150812142557},
issn = {1389-2002},
year = {2015},
date = {2015-01-01},
journal = {Current drug metabolism},
volume = {16},
number = {6},
pages = {427-452},
abstract = {Nucleic acid based drugs (NADBs) are short DNA/RNA molecules that include among others, antisense oligonucleotides, aptamers, small interfering RNAs and micro-interfering RNAs. Despite the different mechanisms of actions, NABDs have the ability to combat the effects of pathological gene expression in many experimental systems. Thus, nowadays, NABDs are considered to have a great therapeutic potential, possibly superior to that of available drugs. Unfortunately, however, the lack of effective delivery systems limits the practical use of NABDs. Due to their hydrophilic nature, NABDs cannot efficiently cross cellular membrane; in addition, they are subjected to fast degradation by cellular and extracellular nucleases. Together these aspects make the delivery of NABDs as naked molecules almost un-effective. To optimize NABD delivery, several solutions have been investigated. From the first attempts described in the beginning of the 1980s, a burst in the number of published papers occurred in the beginning of 1990s reaching a peak in 2012-13. The extensive amount of work performed so far clearly witnesses the interest of the scientific community in this topic. In the present review, we will concentrate on the description of the most interesting advances in the field. Particular emphasis will be put on polymeric and lipid materials used alone or in combination with a promising delivery strategy based on the use of carbon nanotubes. The data presented suggest that, although further improvements are required, we are not far from the identification of effective delivery systems for NABDs thus making the clinical use of these molecules closer to reality.},
keywords = {Biopolymer, Drug Delivery Systems, liposome, Micro and Nano Vectors, nucleic acid based drugs},
pubstate = {published},
tppubtype = {article}
}
2014
Bochicchio, Sabrina; Dalmoro, Annalisa; Barba, Anna Angela; Grassi, Gabriele; Lamberti, Gaetano
Liposomes as siRNA Delivery Vectors Journal Article
In: Current drug metabolism, vol. 15, no 9, pp. 882–892, 2014, ISSN: 1389-2002.
Abstract | Links | BibTeX | Tags: Drug Delivery Systems, liposome, Micro and Nano Vectors, siRNA
@article{Bochicchio2014,
title = {Liposomes as siRNA Delivery Vectors},
author = {Sabrina Bochicchio and Annalisa Dalmoro and Anna Angela Barba and Gabriele Grassi and Gaetano Lamberti},
url = {http://www.eurekaselect.com/128256/article},
doi = {10.2174/1389200216666150206124913},
issn = {1389-2002},
year = {2014},
date = {2014-01-01},
journal = {Current drug metabolism},
volume = {15},
number = {9},
pages = {882--892},
publisher = {Bentham Science Publishers},
abstract = {Nucleic Acid Based Drugs (NABDs) constitute a class of promising and powerful therapeutic new agents with limited side effects, potentially useable against a wide range of diseases, including cancer. Among them, the short interfering RNAs (siRNAs), represent very effective molecules. Despite their in vitro efficacy, the major drawback that limits siRNAs usage consists in a difficult delivery due to their very low stability in physiological fluids, and to their limited membrane-permeability through physiological barriers. On the other hand, the liposomes (lipid bilayers closed in vesicles of various sizes) represent interesting drug delivery systems (DDSs) which can be tailored in order to get the best performance in terms of load, vesicle size and transfection yield. In this work, the current state of study in these two fields, and the connections between them, are briefly summarized.},
keywords = {Drug Delivery Systems, liposome, Micro and Nano Vectors, siRNA},
pubstate = {published},
tppubtype = {article}
}