Le pubblicazioni dei componenti del gruppo di ricerca.
2017
Dalmoro, Annalisa; Cascone, Sara; Lamberti, Gaetano; Barba, Anna Angela
Encapsulation of Active Molecules in Microparticles Based on Natural Polysaccharides Journal Article
In: Natural Product Communications, vol. 12, no 6, pp. 863-866, 2017, ISSN: 1934-578X.
Abstract | Links | BibTeX | Tags: Micro and Nano Vectors, microencapsulation, ultrasonic atomization
@article{NPC01,
title = {Encapsulation of Active Molecules in Microparticles Based on Natural Polysaccharides},
author = {Annalisa Dalmoro and Sara Cascone and Gaetano Lamberti and Anna Angela Barba},
url = {http://www.naturalproduct.us/index.asp
https://www.gruppotpp.it/wp-content/uploads/2017/06/Dalmoro-et-al-NPC-126-863-866-2017-Abstract-1.pdf},
issn = {1934-578X},
year = {2017},
date = {2017-07-31},
journal = {Natural Product Communications},
volume = {12},
number = {6},
pages = {863-866},
abstract = {This mini-review is focused on an engineering approach to produce polysaccharides-based microparticles for nutraceutical and pharmaceutical purposes. A brief introduction about the fundamental properties of polysaccharides and their use as microsystems in food, cosmetics, and pharmaceutics, and a summary of the most important methods of preparation are described. Then, a novel method based on the ultrasonic atomization of solutions of the two most used polysaccharides, alginate and chitosan, followed by ionotropic gelation to produce enteric microsystems for oral administration and, in particular, the basic mechanisms of the encapsulation of molecules with different size and hydrophilicity, are investigated. This mini-review will show therefore the pathway to correctly design a polysaccharide microcarrier for the encapsulation of active molecules with different properties: from the choice of materials features, to the selection and the optimization of production methods with the aim to reduce costs and energy (ionotropic gelation coupled to ultrasonic atomization), to the control of the final carrier size (by purposely developed predictive models), at last to the optimization of encapsulation properties (predicting by model the drug leakage and providing different solutions to avoid it).},
keywords = {Micro and Nano Vectors, microencapsulation, ultrasonic atomization},
pubstate = {published},
tppubtype = {article}
}
2013
Dalmoro, Annalisa; D'Amore, Matteo; Barba, Anna Angela
Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization. Journal Article
In: Translational medicine @ UniSa, vol. 7, no 2, pp. 6–11, 2013, ISSN: 2239-9747.
Abstract | Links | BibTeX | Tags: dimensionless, Micro and Nano Vectors, microparticles size prediction, numbers in atomization, ultrasonic atomization
@article{Dalmoro2013,
title = {Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization.},
author = { Annalisa Dalmoro and Matteo D'Amore and Anna Angela Barba},
url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3829785\&tool=pmcentrez\&rendertype=abstract},
issn = {2239-9747},
year = {2013},
date = {2013-01-01},
journal = {Translational medicine @ UniSa},
volume = {7},
number = {2},
pages = {6--11},
publisher = {Universit},
abstract = {Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented.},
keywords = {dimensionless, Micro and Nano Vectors, microparticles size prediction, numbers in atomization, ultrasonic atomization},
pubstate = {published},
tppubtype = {article}
}
2012
Barba, Anna Angela; Dalmoro, Annalisa; D'Amore, Matteo
An engineering approach to biomedical sciences: advanced strategies in drug delivery systems production Journal Article
In: Translational Medicine@ UniSa, vol. 4, pp. 5–11, 2012.
Abstract | BibTeX | Tags: Micro and Nano Vectors, microwave heating, Process intensification, ultrasonic atomization
@article{Barba2012a,
title = {An engineering approach to biomedical sciences: advanced strategies in drug delivery systems production},
author = { Anna Angela Barba and Annalisa Dalmoro and Matteo D'Amore},
year = {2012},
date = {2012-01-01},
journal = {Translational Medicine@ UniSa},
volume = {4},
pages = {5--11},
publisher = {Universit},
abstract = {Development and optimization of novel production techniques for drug delivery systems are fundamental steps in the “from the bench to the bedside” process which is the base of translational medicine. In particular, in the current scenery where the need for reducing energy consumption, emissions, wastes and risks drives the development of sustainable processes, new pharmaceutical manufacturing does not constitute an exception. In this paper, concepts of process intensification are presented and their transposition in drug delivery systems production is discussed. Moreover, some examples on intensified techniques, for drug microencapsulation and granules drying, are reported.},
keywords = {Micro and Nano Vectors, microwave heating, Process intensification, ultrasonic atomization},
pubstate = {published},
tppubtype = {article}
}