Le pubblicazioni dei componenti del gruppo di ricerca.
2016
Lamberti, Gaetano; Cascone, Sara; Marra, Francesco; Titomanlio, Giuseppe; D'Amore, Matteo; Barba, Anna Angela
Gastrointestinal behavior and ADME phenomena: II. in silico simulation Journal Article
In: Journal of Drug Delivery Science and Technology, vol. 35, pp. 165-171, 2016, ISSN: 1773-2247.
Abstract | Links | BibTeX | Tags: In silico, Pharmacokinetics
@article{Lamberti2016,
title = {Gastrointestinal behavior and ADME phenomena: II. in silico simulation},
author = {Gaetano Lamberti and Sara Cascone and Francesco Marra and Giuseppe Titomanlio and Matteo D'Amore and Anna Angela Barba},
url = {http://www.sciencedirect.com/science/article/pii/S1773224716302118},
doi = {10.1016/j.jddst.2016.06.014},
issn = {1773-2247},
year = {2016},
date = {2016-07-04},
journal = {Journal of Drug Delivery Science and Technology},
volume = {35},
pages = {165-171},
abstract = {The main goal of the pharmacokinetic modeling is the prediction of the drug concentration in the blood, tissues, and organs. The approaches to the modeling of physiological phenomena can be different on the basis of the details used to describe the Adsorption, Distribution, Metabolism, and Excretion (ADME) phenomena.
This review is focused on the state of the art in the pharmacokinetic modeling, on the different approaches used to describe the drug fate once it is administered. In particular, the early and the recent developments in the pharmacokinetic and in the gastrointestinal behavior modeling are discussed, together with some case histories of their applications.},
keywords = {In silico, Pharmacokinetics},
pubstate = {published},
tppubtype = {article}
}
This review is focused on the state of the art in the pharmacokinetic modeling, on the different approaches used to describe the drug fate once it is administered. In particular, the early and the recent developments in the pharmacokinetic and in the gastrointestinal behavior modeling are discussed, together with some case histories of their applications.
2015
Cascone, Sara; Piazza, Ornella; Lamberti, Gaetano; Barba, Anna Angela; Abbiati, Roberto Andrea; Manca, Davide
PHARMACOKINETICS OF REMIFENTANIL: METABOLISM AND MODELING Proceedings Article
In: 1st International Congress of Controlled Release Society - Greek Local Chapter, 2015.
BibTeX | Tags: In silico, Pharmacokinetics
@inproceedings{Cascone:aa,
title = {PHARMACOKINETICS OF REMIFENTANIL: METABOLISM AND MODELING},
author = {Sara Cascone and Ornella Piazza and Gaetano Lamberti and Anna Angela Barba and Roberto Andrea Abbiati and Davide Manca},
year = {2015},
date = {2015-05-27},
booktitle = {1st International Congress of Controlled Release Society - Greek Local Chapter},
keywords = {In silico, Pharmacokinetics},
pubstate = {published},
tppubtype = {inproceedings}
}
Abbiati, Roberto Andrea; Lamberti, Gaetano; Barba, Anna Angela; Grassi, Mario; Manca, Davide
A PSE approach to patient-individualized physiologically-based pharmacokinetic modeling Journal Article
In: 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, vol. 37, pp. 77–84, 2015, ISSN: 15707946.
Abstract | Links | BibTeX | Tags: Complexity reduction, In silico, Lumping, Personalization, Pharmacokinetics, Physiologically-Based modeling, Remifentanil
@article{Abbiati2015a,
title = {A PSE approach to patient-individualized physiologically-based pharmacokinetic modeling},
author = { Roberto Andrea Abbiati and Gaetano Lamberti and Anna Angela Barba and Mario Grassi and Davide Manca},
url = {http://www.sciencedirect.com/science/article/pii/B9780444635785500104},
doi = {10.1016/B978-0-444-63578-5.50010-4},
issn = {15707946},
year = {2015},
date = {2015-01-01},
journal = {12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering},
volume = {37},
pages = {77--84},
publisher = {Elsevier},
series = {Computer Aided Chemical Engineering},
abstract = {Pharmacokinetic modeling allows predicting the drug concentration reached in the blood as a consequence of a specific administration. When such models are based on mammalian anatomy and physiology it is possible to theoretically evaluate the drug concentration in every organ and tissue of the body. This is the case of the so-called physiologically based pharmacokinetic (PBPK) models. This paper proposes and validates a procedure to deploy PBPK models based on a simplified, although highly consistent with human anatomy and physiology, approach. The article aims at reducing the pharmacokinetic variations among subjects due to inter-individual variability, by applying a strategy to individualize some model parameters. The simulation results are validated respect to experimental data on remifentanil.},
keywords = {Complexity reduction, In silico, Lumping, Personalization, Pharmacokinetics, Physiologically-Based modeling, Remifentanil},
pubstate = {published},
tppubtype = {article}
}
2014
Cont, Renzo Del; Abrami, Michela; Hasa, Dritan; Perissutti, Beatrice; Voinovich, Dario; Barba, Anna Angela; Lamberti, Gaetano; Grassi, Gabriele; Colombo, Italo; Manca, Davide; Grassi, Mario
A physiologically oriented mathematical model for the description of in vivo drug release and absorption Journal Article
In: ADMET & DMPK, vol. 2, no 2, pp. 80–97, 2014, ISSN: 1848-7718.
Abstract | Links | BibTeX | Tags: In silico, Pharmacokinetics
@article{del2014physiologically,
title = {A physiologically oriented mathematical model for the description of in vivo drug release and absorption},
author = {Renzo {Del Cont} and Michela Abrami and Dritan Hasa and Beatrice Perissutti and Dario Voinovich and Anna Angela Barba and Gaetano Lamberti and Gabriele Grassi and Italo Colombo and Davide Manca and Mario Grassi},
url = {http://pub.iapchem.org/ojs/index.php/admet/article/view/34},
doi = {10.5599/admet.2.2.34},
issn = {1848-7718},
year = {2014},
date = {2014-07-01},
journal = {ADMET \& DMPK},
volume = {2},
number = {2},
pages = {80--97},
abstract = {This paper focuses on a physiologically-oriented mathematical model aimed at studying the in vivo drug release, absorption, distribution, metabolism and elimination (ADME). To this purpose, the model accounts for drug delivery from an ensemble of non-eroding poly-disperse polymeric particles and the subsequent ADME processes. The model outcomes are studied with reference to three widely used drugs: theophylline, temazepam and nimesulide. One of the most important results of this study is the quantitative evaluation of the interplay between the release kinetics and the subsequent ADME processes. Indeed, it is usually assumed that in vivo drug release coincides with in vitro so that the effect exerted by the ADME processes is neglected. In addition, the proposed model may be an important tool for the design of delivery systems since, through proper changes, it could also account for different oral delivery systems.},
keywords = {In silico, Pharmacokinetics},
pubstate = {published},
tppubtype = {article}
}