Le pubblicazioni dei componenti del gruppo di ricerca.
2023
Mancino, Raffaele; Caccavo, Diego; Barba, Anna Angela; Lamberti, Gaetano; Biasin, Alice; Cortesi, Angelo; Grassi, Gabriele; Grassi, Mario; Abrami, Michela
Agarose Cryogels: Production Process Modeling and Structural Characterization Journal Article
In: Gels, vol. 9, no 9, pp. 765, 2023, ISSN: 23102861.
Abstract | Links | BibTeX | Tags: Agarose, cryogels, Equilibrium, Hydrogels, Modeling, Rheology
@article{Mancino2023,
title = {Agarose Cryogels: Production Process Modeling and Structural Characterization },
author = {Raffaele Mancino and Diego Caccavo and Anna Angela Barba and Gaetano Lamberti and Alice Biasin and Angelo Cortesi and Gabriele Grassi and Mario Grassi and Michela Abrami},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172281028\&doi=10.3390%2fgels9090765\&partnerID=40\&md5=7753d30977c1b97694c4ede138749d57},
doi = {10.3390/gels9090765},
issn = {23102861},
year = {2023},
date = {2023-09-20},
journal = {Gels},
volume = {9},
number = {9},
pages = {765},
abstract = {A cryogel is a cross-linked polymer network with different properties that are determined by its manufacturing technique. The formation of a cryogel occurs at low temperatures and results in a porous structure whose pore size is affected by thermal conditions. The adjustable pore sizes of cryogels make them attractive for diverse applications. In this study, the influence of the external operational temperature, which affects the cooling and freezing rates, on the production of cryogels with 2% w/w agarose is investigated. Moreover, a mathematical model is developed to simulate the cryogel production process and provide an initial estimate of the pore size within the structure. The predictions of the model, supported by qualitative light microscopy images, demonstrate that cryogels produced at higher process temperatures exhibit larger pore sizes. Moreover, the existence of pore size distribution within the gel structure is confirmed. Finally, stress relaxation tests, coupled with an image analysis, validates that cryogels produced at lower temperatures possess a higher stiffness and slower water release rates.},
keywords = {Agarose, cryogels, Equilibrium, Hydrogels, Modeling, Rheology},
pubstate = {published},
tppubtype = {article}
}
Piano, Raffaella De; Caccavo, Diego; Barba, Anna Angela; Lamberti, Gaetano
Polyelectrolyte hydrogels in biological systems: Modeling of swelling and deswelling behavior Journal Article
In: Chemical Engineering Science, vol. 279, no 118959, 2023, ISSN: 00092509.
Abstract | Links | BibTeX | Tags: Biological systems, Equilibrium, Hydrogels, Modeling, Polyelectrolytes
@article{Piano}2023b,
title = {Polyelectrolyte hydrogels in biological systems: Modeling of swelling and deswelling behavior},
author = {Raffaella {De Piano} and Diego Caccavo and Anna Angela Barba and Gaetano Lamberti},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161532217\&doi=10.1016%2fj.ces.2023.118959\&partnerID=40\&md5=a269515dd96617e9242f75711516e847},
doi = {10.1016/j.ces.2023.118959},
issn = {00092509},
year = {2023},
date = {2023-09-05},
journal = {Chemical Engineering Science},
volume = {279},
number = {118959},
abstract = {Polyelectrolyte hydrogels are a particular class of hydrogel whose behavior is connected to the variation of pH in the surrounding solution. Their behavior is influenced by the ionizable groups present on their chain. These groups could be acid or basic and polyelectrolytes could be anionic or cationic. To fully understand their behavior mathematical modeling has been widely used over many years. In this work a model based on a monophasic approach will be used to describe a general behavior of anionic hydrogels in a steady state condition at pH lower (or equal) to seven. Free swelling experiments and constrained swelling experiments have been simulated varying the parameters of the model to highlight the properties of the material. From a comparison with experimental data, it results that the proposed model can describe the general behavior of the system as described in the literature.},
keywords = {Biological systems, Equilibrium, Hydrogels, Modeling, Polyelectrolytes},
pubstate = {published},
tppubtype = {article}
}
2020
Caccavo, Diego; Lamberti, Gaetano; Barba, Anna Angela
Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling Journal Article
In: European Journal of Pharmaceutics and Biopharmaceutics, vol. 152, pp. 299-306, 2020.
Abstract | Links | BibTeX | Tags: Agarose, drug delivery, Hydrogels, Modeling, Poroviscoelasticity
@article{Caccavo2020,
title = {Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling},
author = {Diego Caccavo and Gaetano Lamberti and Anna Angela Barba},
url = {https://doi.org/10.1016/j.ejpb.2020.05.020},
doi = {10.1016/j.ejpb.2020.05.020},
year = {2020},
date = {2020-05-27},
journal = {European Journal of Pharmaceutics and Biopharmaceutics},
volume = {152},
pages = {299-306},
abstract = {Hydrogels are peculiar soft materials formed by a 3D polymeric network surrounded by water molecules. In these systems the mechanical and the chemical energy are well balanced and an applied external stimulus (mechanical or chemical) can cause a distinctive response, where the contributions of the mechanics and the mass transport are combined to form a “poroviscoelastic” behavior. In this work the poroviscoelastic behavior of the agarose gels has been investigated, from the experimental and modeling points of view, by applications of external mechanical stimuli. The pure gel, brought in the non-equilibrium condition, showed that the combined effect of mechanical viscoelasticity and water transport were essential to reach the new equilibrium condition. Furthermore, the agarose gel loaded with a model drug, theophylline, showed that the mechanical stimulus can enhance the drug release from the system by stretching the polymeric chains, modifying the mesh size and therefore the drug diffusion coefficient.},
keywords = {Agarose, drug delivery, Hydrogels, Modeling, Poroviscoelasticity},
pubstate = {published},
tppubtype = {article}
}
2017
Caccavo, Diego; Cascone, Sara; Lamberti, Gaetano; Dalmoro, Annalisa; Barba, Anna Angela
Modeling of the behavior of natural polysaccharides hydrogels for bio-pharma applications Journal Article
In: Natural Product Communications, vol. 12, no 6, pp. 867-871, 2017, ISSN: 1934-578X.
Abstract | Links | BibTeX | Tags: Hydrogel Characterization, Hydrogel Modeling, Hydrogels, Mathematical modeling, Modeling
@article{NPC02,
title = {Modeling of the behavior of natural polysaccharides hydrogels for bio-pharma applications},
author = {Diego Caccavo and Sara Cascone and Gaetano Lamberti and Annalisa Dalmoro and Anna Angela Barba},
url = {http://www.naturalproduct.us/index.asp
https://www.gruppotpp.it/wp-content/uploads/2017/06/Caccavo-et-al-NPC-126-867-871-2017-Abstract.pdf},
issn = {1934-578X},
year = {2017},
date = {2017-07-31},
journal = {Natural Product Communications},
volume = {12},
number = {6},
pages = {867-871},
abstract = {Hydrogels, even if not exclusively obtained from natural sources, are widely used for pharmaceuticals and for biomedical applications. The reasons for their uses are their biocompatibility and the possibility to obtain systems and devices with different properties, due to variable characteristics of the materials. In order to effectively design and produce these systems and devices, two main ways are available: i) trial-and-error process, at least guided by experience, during which the composition of the system and the production steps are changed in order to get the desired behavior; ii) production process guided by the a-priori simulation of the systems’ behavior, thanks to proper tuned mathematical models of the reality. Of course the second approach, when applicable, allows tremendous savings in term of human and instrumental resources.
In this mini-review, several modeling approaches useful to describe the behavior of natural polysaccharide-based hydrogels in bio-pharma applications are reported. In particular, reported case histories are: i) the size calculation of micro-particles obtained by ultrasound assisted atomization; ii) the release kinetics from core-shell micro-particles, iii) the solidification behavior of blends of synthetic and natural polymers for gel paving of blood vessels, iv) the drug release from hydrogel-based tablets. This material can be seen as a guide toward the use of mathematical modeling in bio-pharma applications.
},
keywords = {Hydrogel Characterization, Hydrogel Modeling, Hydrogels, Mathematical modeling, Modeling},
pubstate = {published},
tppubtype = {article}
}
In this mini-review, several modeling approaches useful to describe the behavior of natural polysaccharide-based hydrogels in bio-pharma applications are reported. In particular, reported case histories are: i) the size calculation of micro-particles obtained by ultrasound assisted atomization; ii) the release kinetics from core-shell micro-particles, iii) the solidification behavior of blends of synthetic and natural polymers for gel paving of blood vessels, iv) the drug release from hydrogel-based tablets. This material can be seen as a guide toward the use of mathematical modeling in bio-pharma applications.
2015
Caccavo, Diego; Cascone, Sara; Lamberti, Gaetano; Barba, Anna Angela
Controlled drug release from hydrogel-based matrices: Experiments and modeling. Journal Article
In: International journal of pharmaceutics, vol. 486, no 1-2, pp. 144–152, 2015, ISSN: 1873-3476.
Abstract | Links | BibTeX | Tags: Hydrogel Characterization, Hydrogel Modeling, Hydrogels, Modeling, Texture analysis, Transport phenomena, Water uptake
@article{Caccavo2015a,
title = {Controlled drug release from hydrogel-based matrices: Experiments and modeling.},
author = { Diego Caccavo and Sara Cascone and Gaetano Lamberti and Anna Angela Barba},
url = {http://www.sciencedirect.com/science/article/pii/S0378517315002707},
doi = {10.1016/j.ijpharm.2015.03.054},
issn = {1873-3476},
year = {2015},
date = {2015-03-01},
journal = {International journal of pharmaceutics},
volume = {486},
number = {1-2},
pages = {144--152},
abstract = {Controlled release by oral administration is mainly achieved by pharmaceuticals based on hydrogels. Once swallowed, a matrix made of hydrogels experiences water up-take, swelling, drug dissolution and diffusion, polymer erosion. The detailed understanding and quantification of such a complex behavior is a mandatory prerequisite to the design of novel pharmaceuticals for controlled oral delivery. In this work, the behavior of hydrogel-based matrices has been investigated by means of several experimental techniques previously pointed out (gravimetric, and based on texture analysis); and then all the observed features were mathematically described using a physical model, defined and recently improved by our research group (based on balance equations, rate equations and swelling predictions). The agreement between the huge set of experimental data and the detailed calculations by the model is good, confirming the validity of both the experimental and the theoretical approaches.},
keywords = {Hydrogel Characterization, Hydrogel Modeling, Hydrogels, Modeling, Texture analysis, Transport phenomena, Water uptake},
pubstate = {published},
tppubtype = {article}
}