|
Titolo
Identificazione di sistemi di rilascio ottimali per i Nucleic Acid Based Drugs e studio dei meccanismi di azione in alcuni modelli di patologie umane infiammatorie e tumorali
Coordinatore: Mario Grassi
Sommario
Per il carcinoma epatocellulare, l’adenocarcinoma prostatico, la restenosi coronarica, l’aneurisma dell’aorta addominale, le patologie infiammatorie croniche dell’intestino e del polmone, tutte patologie ad ampia diffusione, è urgente un significativo miglioramento dell’efficacia degli approcci terapeutici disponibili. L’uso dei farmaci basati sugli acidi nucleici (NABD), una nuova ed emergente classe di molecole, è considerato molto promettente. Tuttavia, una limitazione all’uso dei NABD dipende dalla mancanza di sistemi di rilascio ottimali in grado di minimizzare la degradazione dei NABD nei fluidi biologici e di permetterne un’azione mirata ai soli tessuti malati.
Scopo di questo progetto è di sviluppare nuovi sistemi di rilascio per i NABD, adeguati alle patologie considerate. Il problema verrà affrontato dal punto di vista ingegneristico, ma anche chimico-farmacetico e bio-medico. Parteciperanno al progetto nove gruppi Universitari con il supporto di diciassette gruppi di ricerca non universitari.
Unità di ricerca
Unità | Responsabile | Attività |
01. UNITS | Mario Grassi | Read More
|
02. UNISA | Gaetano Lamberti | Read More
Le attività principali del progetto di ricerca consisteranno nel:
|
03. UNIPV | Piersandro Pallavicini | Read More
Per individuare un’efficace terapia per il carcinoma epatocellulare, studieremo il rilascio di NABD, selezionati dall’Unità 01, per mezzo di nanovettori basati su nanoparticelle d’oro non simmetriche (asymmetric branched nanoparticles, ABN) e su nanoparticelle sferiche di magnetite (MNP). |
04. UNINA | Stefano Guido | Read More
L’attività sarà focalizzata sullo studio dell’interazione tra le cellule del sangue umano, in particolare dei globuli rossi, sia con le pareti dei vasi che con le micro/nano particelle sviluppate dalle altre Unità per il trasporto e il rilascio dei NABD. |
05. CNR NA | Domenico Larobina | Read More
L’obbiettivo è quello di fornire informazioni strutturali sui sistemi impiegati nel rilascio dei NABD proposti dalle altre Unità coinvolte nel progetto. A tal fine verranno utilizzate sia tecniche spettroscopiche che meccaniche. Tale caratterizzazione costituisce un indispensabile supporto conoscitivo necessario alla messa a punto dei dispositivi in grado di rilasciare i NABD. |
06. UNIPA1 | Gennara Cavallaro | Read More
Progetteremo sistemi di rilascio per i NABD utilizzabili nelle condizioni patologiche proposte dalle Unità 01, 02, 08; in particolare, valuteremo:
|
07. UNIPA2 | Valerio Brucato | Read More
Prepareremo scaffolds polimerici (PLLA e/o mix PLLA/PLA) pre-angiogenizzati, come da brevetto proprietario, ed effettueremo test “in vitro” sul rilascio di NABD. |
08. UNIFG | Sante Di Gioia | Read More
Al fine di trovare nuovi approcci terapeutici dell’asma grave, proponiamo di usare NABD diretti contro GM-CSF, HMGB1, e TGF-ß1. In collaborazione con l’Unità 01 verranno selezionati i NABD appropriati; con il supporto Unità 02, 05 e 06 verranno sviluppati adeguati sistemi di rilascio.
|
09. POLIMI | Davide Manca | Read More
Il nostro contributo consiste in un servizio di modellazione matematica per le Unità del presente progetto. La modellazione riguarderà due argomenti diversi:
Per entrambi gli obiettivi, di particolare utilità sarà il modello sviluppato dall’Unità 07 |
Prodotti della ricerca
Articoli pubblicati su riviste internazionali
Read More2017
Barba, Anna Angela; Grassi, Gabriele; Grassi, Mario; Lamberti, Gaetano
New Trends in Gene Therapy: Multidisciplinary Approaches to siRNAs Controlled Delivery Journal Article
In: Current Drug Delivery, vol. 14, no 2, pp. 156-157, 2017.
Abstract | Links | BibTeX | Tags: Micro and Nano Vectors
@article{Barba2017b,
title = {New Trends in Gene Therapy: Multidisciplinary Approaches to siRNAs Controlled Delivery},
author = {Anna Angela Barba and Gabriele Grassi and Mario Grassi and Gaetano Lamberti},
url = {https://www.gruppotpp.it/wp-content/uploads/2017/03/01.-Barba-et-al-CDD-142-156-157-2017.pdf
http://www.eurekaselect.com/149727},
doi = {10.2174/156720181402170202202808},
year = {2017},
date = {2017-02-09},
journal = {Current Drug Delivery},
volume = {14},
number = {2},
pages = {156-157},
abstract = {Nucleic acid based drugs (NABDs), powerful in principle, can be of great importance for health care applications if and
only if effective delivery systems are available. Among NABDs, small interfering RNAs (siRNAs) show revolutionary potentiality
due to the ability to silencing the expression of gene-causing diseases. Thus, siRNA drugs have huge therapeutic potentials,
even in the treatment of life threatening diseases. However, the use of siRNAs is limited because of some inconveniences:
they are large macromolecules, negatively charged, undergo rapid degradation by plasma enzymes, are subjected to fast renal
clearance/hepatic sequestration and can hardly cross cellular membranes. These aspects seriously impair siRNAs usability as
therapeutics. To overcome these obstacles, the scientific problem has to be faced out through a multidisciplinary approach, integrating
all relevant and necessary expertise. In this Full-Thematic Issue of the Current Drug Delivery, the development of
siRNAs delivery approaches is described from different points of view by several research groups, which have been jointly
working on the subject in the last years.
The Thematic Issue starts with the paper by Chiarappa et al., devoted to describe the potentiality of the Chemical Engineering
expertise in the “Bio world” through reminding the foundation of Biological Engineering (BE) that develops, with its current
and multidisciplinary approaches, winning strategies in modern research. The concepts of unit operations and transport
phenomena, with which chemical engineers are confident, are applied to the description of the biomedical/pharmaceutical
world and to the study of siRNAs delivery, in order to get a better understanding and description of how biological systems
work.
The engineering approach to siRNA delivery is, then, reported analyzing two topics. In particular, the paper by Caccavo
et al. deals with the modeling of hydrogel based drug delivery systems, materials widely used in controlled drug delivery,
which could be adopted also for siRNAs delivery. Abbiati and Manca report the use of a physiologically-based pharmacokinetic
model, useful in order to assess the fate of drugs, including siRNAs, once administered. The novel preparative methods to
be used in siRNAs delivery are the subjects of the paper by Bochicchio et al., focusing on both the lipid-based and the polymerbased
carriers. More specifically, Dalmoro et al. discuss the use of injectable chitosan/β-glycerophosphate systems, whereas
Cavallaro et al. report the uses of polycation-based smart carriers for siRNAs delivery. Advanced testing methods for the study
of drug delivery systems and the interactions between delivery systems and living systems are discussed in the paper by
D’Apolito et al. and Carf\`{i}-Pavia et al. D’Apolito et al. focus on the effect of liposomal carriers in microcirculation; Carf\`{i}-Pavia
et al. concentrate the attention on a novel bioreactor able to mimic the vascular behavior for in-vitro tests of drug delivery. Last
but not the least, the medical applications of novel delivery systems and siRNAs are discussed in the paper by Piazza et al.,
focusing on the delivery of siRNAs by liposomes in order to silence cycline D1 in ex-vivo human tissues. Moreover, the paper
by Di Gioia et al., deals with the siRNAs’ based therapies against inflammatory respiratory diseases, while the paper by Farra
et al., discusses the role of the transcription factor E2F1 in hepatocellular carcinoma and the opportunity of its silencing by siRNAs.
In conclusion, the papers presented strongly indicate that only a multidisciplinary approach can successfully overcome the
still existing limitation in the use of siRNAs, molecules with an extraordinary therapeutic potential.},
keywords = {Micro and Nano Vectors},
pubstate = {published},
tppubtype = {article}
}
only if effective delivery systems are available. Among NABDs, small interfering RNAs (siRNAs) show revolutionary potentiality
due to the ability to silencing the expression of gene-causing diseases. Thus, siRNA drugs have huge therapeutic potentials,
even in the treatment of life threatening diseases. However, the use of siRNAs is limited because of some inconveniences:
they are large macromolecules, negatively charged, undergo rapid degradation by plasma enzymes, are subjected to fast renal
clearance/hepatic sequestration and can hardly cross cellular membranes. These aspects seriously impair siRNAs usability as
therapeutics. To overcome these obstacles, the scientific problem has to be faced out through a multidisciplinary approach, integrating
all relevant and necessary expertise. In this Full-Thematic Issue of the Current Drug Delivery, the development of
siRNAs delivery approaches is described from different points of view by several research groups, which have been jointly
working on the subject in the last years.
The Thematic Issue starts with the paper by Chiarappa et al., devoted to describe the potentiality of the Chemical Engineering
expertise in the “Bio world” through reminding the foundation of Biological Engineering (BE) that develops, with its current
and multidisciplinary approaches, winning strategies in modern research. The concepts of unit operations and transport
phenomena, with which chemical engineers are confident, are applied to the description of the biomedical/pharmaceutical
world and to the study of siRNAs delivery, in order to get a better understanding and description of how biological systems
work.
The engineering approach to siRNA delivery is, then, reported analyzing two topics. In particular, the paper by Caccavo
et al. deals with the modeling of hydrogel based drug delivery systems, materials widely used in controlled drug delivery,
which could be adopted also for siRNAs delivery. Abbiati and Manca report the use of a physiologically-based pharmacokinetic
model, useful in order to assess the fate of drugs, including siRNAs, once administered. The novel preparative methods to
be used in siRNAs delivery are the subjects of the paper by Bochicchio et al., focusing on both the lipid-based and the polymerbased
carriers. More specifically, Dalmoro et al. discuss the use of injectable chitosan/β-glycerophosphate systems, whereas
Cavallaro et al. report the uses of polycation-based smart carriers for siRNAs delivery. Advanced testing methods for the study
of drug delivery systems and the interactions between delivery systems and living systems are discussed in the paper by
D’Apolito et al. and Carfì-Pavia et al. D’Apolito et al. focus on the effect of liposomal carriers in microcirculation; Carfì-Pavia
et al. concentrate the attention on a novel bioreactor able to mimic the vascular behavior for in-vitro tests of drug delivery. Last
but not the least, the medical applications of novel delivery systems and siRNAs are discussed in the paper by Piazza et al.,
focusing on the delivery of siRNAs by liposomes in order to silence cycline D1 in ex-vivo human tissues. Moreover, the paper
by Di Gioia et al., deals with the siRNAs’ based therapies against inflammatory respiratory diseases, while the paper by Farra
et al., discusses the role of the transcription factor E2F1 in hepatocellular carcinoma and the opportunity of its silencing by siRNAs.
In conclusion, the papers presented strongly indicate that only a multidisciplinary approach can successfully overcome the
still existing limitation in the use of siRNAs, molecules with an extraordinary therapeutic potential.
Bochicchio, Sabrina; Dalmoro, Annalisa; Barba, Anna Angela; D'Amore, Matteo; Lamberti, Gaetano
New preparative approaches for micro and nano drug delivery carriers Journal Article
In: Current Drug Delivery, vol. 14, no 2, pp. 203 - 215, 2017.
Abstract | Links | BibTeX | Tags: Micro and Nano Vectors
@article{Bochicchio2016b,
title = {New preparative approaches for micro and nano drug delivery carriers},
author = {Sabrina Bochicchio and Annalisa Dalmoro and Anna Angela Barba and Matteo D'Amore and Gaetano Lamberti},
url = {https://www.gruppotpp.it/wp-content/uploads/2017/03/05.-Bochicchio-et-al-CDD-142-203-215-2017.pdf
http://benthamscience.com/journals/current-drug-delivery/volume/14/issue/2/page/203/},
doi = {10.2174/1567201813666160628093724},
year = {2017},
date = {2017-02-08},
issuetitle = {NEW TRENDS IN GENE THERAPY: MULTIDISCIPLINARY APPROACHES TO SIRNAS CONTROLLED DELIVERY},
journal = {Current Drug Delivery},
volume = {14},
number = {2},
pages = {203 - 215},
abstract = {The full success of pharmacological therapies is strongly depending from the use of suitable, efficient and smart drug delivery systems (DDSs). Thus DDSs development is one of the main challenges in pharmaceutical industry both to achieve tailored carrier systems based on drug features and to promote manufacturing innovations to reduce energetic resources, emissions, wastes and risks. Main functions of an ideal DDS are: to protect loaded active molecules from degradation in physiological environments; to deliver them in a controlled manner and towards a specific organ or tissue, to allow the maintenance of the drug level in the body within therapeutic window. Smart features, such as those able to induce active molecule release upon the occurrence of specific physiological stimuli, are also desirable. Under the manufacturing point of view, the current industrial scenery is obliged to respond to the increasing market requirements and to the mandatory rules in sustainable productions such as raw material and energy savings.
In this work a general framework on drug delivery systems preparation techniques is presented. In particular two sections on innovation in preparative approaches carried out are detailed. These latter involve the use of microwave and ultrasonic energy applied in the production of polymeric and lipidic delivery systems on micro- and nanometric scale. The novelties of these preparative approaches are emphasized and examples of developed drug delivery carriers, loaded with vitamins and drug mimicking siRNA, are shown.},
keywords = {Micro and Nano Vectors},
pubstate = {published},
tppubtype = {article}
}
In this work a general framework on drug delivery systems preparation techniques is presented. In particular two sections on innovation in preparative approaches carried out are detailed. These latter involve the use of microwave and ultrasonic energy applied in the production of polymeric and lipidic delivery systems on micro- and nanometric scale. The novelties of these preparative approaches are emphasized and examples of developed drug delivery carriers, loaded with vitamins and drug mimicking siRNA, are shown.
2015
Cavallaro, Gennara; Craparo, Emanuela Fabiola; Sardo, Carla; Lamberti, Gaetano; Barba, Anna Angela; Dalmoro, Annalisa
PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions. Journal Article
In: International journal of pharmaceutics, vol. 495, no 2, pp. 719-727, 2015, ISSN: 1873-3476.
Abstract | Links | BibTeX | Tags: Biopolymer, Micro and Nano Vectors, multiple emulsions, nanoparticles, solvent evaporation
@article{Cavallaro2015,
title = {PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.},
author = { Gennara Cavallaro and Emanuela Fabiola Craparo and Carla Sardo and Gaetano Lamberti and Anna Angela Barba and Annalisa Dalmoro},
url = {http://www.sciencedirect.com/science/article/pii/S0378517315302519},
doi = {10.1016/j.ijpharm.2015.09.050},
issn = {1873-3476},
year = {2015},
date = {2015-09-01},
journal = {International journal of pharmaceutics},
volume = {495},
number = {2},
pages = {719-727},
abstract = {Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the $alpha$,$beta$-poly(N-2-hydroxyethyl)-DL-aspartamide - polylactic acid (PHEA - PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with $alpha$ tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total $alpha$ tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi- long term release drug delivery systems.},
keywords = {Biopolymer, Micro and Nano Vectors, multiple emulsions, nanoparticles, solvent evaporation},
pubstate = {published},
tppubtype = {article}
}
Barba, Anna Angela; Dalmoro, Annalisa; D'Amore, Matteo; Lamberti, Gaetano
Liposoluble vitamin encapsulation in shell–core microparticles produced by ultrasonic atomization and microwave stabilization Journal Article
In: LWT - Food Science and Technology, vol. 64, no 1, pp. 149–156, 2015, ISSN: 00236438.
Abstract | Links | BibTeX | Tags: drug delivery, Micro and Nano Vectors, Microwave drying, Shell{–}core microparticles, Ultrasonic energy, Vitamins
@article{Barba2015a,
title = {Liposoluble vitamin encapsulation in shell\textendashcore microparticles produced by ultrasonic atomization and microwave stabilization},
author = { Anna Angela Barba and Annalisa Dalmoro and Matteo D'Amore and Gaetano Lamberti},
url = {http://www.sciencedirect.com/science/article/pii/S002364381500403X},
doi = {10.1016/j.lwt.2015.05.040},
issn = {00236438},
year = {2015},
date = {2015-01-01},
journal = {LWT - Food Science and Technology},
volume = {64},
number = {1},
pages = {149--156},
abstract = {Encapsulation may protect unstable, fat soluble vitamins such as vitamin D2 (ergocalciferol). However, encapsulation by the solvent extraction and/or evaporation techniques can require toxic organic solvents, which greatly increase processing costs. The objective of this study was to evaluate the effect on ergocalciferol encapsulation by a combination of the ionic gelation method with the ultrasonic atomization and microwave drying. Optimization of manufacturing parameters included the addition of pluronic-F127 to the core solution at 1.5% w/w to increase the encapsulation efficiency to nearly 92%, greatly improving performance compared to Tween 80 at 0.5% w/w. Microwave treatment at 230 W promoted the recovery of 100% of the ergocalciferol and reduced drying times to about 30 min, while 690 W degraded 40% of the D2. In contrast, the conventional heating degraded 17% of the ergocalciferol during 12 h of processing. By all the applied methods, microparticles were produced with similar gastoresistance properties of less than 10% release at pH of 1.0, to nearly 100% release at pH of 6.8 and 240 min of dissolution. Analysis showed limited ergocalciferol degradation after 5 months of storage.},
keywords = {drug delivery, Micro and Nano Vectors, Microwave drying, Shell{\textendash}core microparticles, Ultrasonic energy, Vitamins},
pubstate = {published},
tppubtype = {article}
}
2014
Dalmoro, Annalisa; Barba, Anna Angela; D'Amore, Matteo; Lamberti, Gaetano
Single-Pot Semicontinuous Bench Scale Apparatus To Produce Microparticles Journal Article
In: Industrial & Engineering Chemistry Research, vol. 53, no 7, pp. 2771–2780, 2014, ISSN: 0888-5885.
Abstract | Links | BibTeX | Tags: Micro and Nano Vectors
@article{Dalmoro2014,
title = {Single-Pot Semicontinuous Bench Scale Apparatus To Produce Microparticles},
author = { Annalisa Dalmoro and Anna Angela Barba and Matteo D'Amore and Gaetano Lamberti},
url = {http://pubs.acs.org/doi/abs/10.1021/ie403308q},
doi = {10.1021/ie403308q},
issn = {0888-5885},
year = {2014},
date = {2014-02-01},
journal = {Industrial \& Engineering Chemistry Research},
volume = {53},
number = {7},
pages = {2771--2780},
publisher = {ACS Publications},
abstract = {This work presents both the design of a novel process to produce microparticles with a shell−core structure and a bench scale apparatus purposely realized. The developed process was designed to respond to mandatory needs of process intensification. It involved the coupling of two emergent technologies: atomization assisted by ultrasonic energy and microwave heating. The former was used to atomize polymeric solutions; the latter was applied to stabilize the produced droplets by drying. Both operations were performed in the same vessel with the aim to have a single-pot process chamber and were carried out by a semicontinuous procedure. Basic design criteria and advantages of the ultrasonic−microwave coupled operations in the realized apparatus are presented and discussed. Results of testing and of operating runs to produce shell−core microparticles are also reported, emphasizing the main features of the produced particles.},
keywords = {Micro and Nano Vectors},
pubstate = {published},
tppubtype = {article}
}
Bochicchio, Sabrina; Dalmoro, Annalisa; Barba, Anna Angela; Grassi, Gabriele; Lamberti, Gaetano
Liposomes as siRNA Delivery Vectors Journal Article
In: Current drug metabolism, vol. 15, no 9, pp. 882–892, 2014, ISSN: 1389-2002.
Abstract | Links | BibTeX | Tags: Drug Delivery Systems, liposome, Micro and Nano Vectors, siRNA
@article{Bochicchio2014,
title = {Liposomes as siRNA Delivery Vectors},
author = {Sabrina Bochicchio and Annalisa Dalmoro and Anna Angela Barba and Gabriele Grassi and Gaetano Lamberti},
url = {http://www.eurekaselect.com/128256/article},
doi = {10.2174/1389200216666150206124913},
issn = {1389-2002},
year = {2014},
date = {2014-01-01},
journal = {Current drug metabolism},
volume = {15},
number = {9},
pages = {882--892},
publisher = {Bentham Science Publishers},
abstract = {Nucleic Acid Based Drugs (NABDs) constitute a class of promising and powerful therapeutic new agents with limited side effects, potentially useable against a wide range of diseases, including cancer. Among them, the short interfering RNAs (siRNAs), represent very effective molecules. Despite their in vitro efficacy, the major drawback that limits siRNAs usage consists in a difficult delivery due to their very low stability in physiological fluids, and to their limited membrane-permeability through physiological barriers. On the other hand, the liposomes (lipid bilayers closed in vesicles of various sizes) represent interesting drug delivery systems (DDSs) which can be tailored in order to get the best performance in terms of load, vesicle size and transfection yield. In this work, the current state of study in these two fields, and the connections between them, are briefly summarized.},
keywords = {Drug Delivery Systems, liposome, Micro and Nano Vectors, siRNA},
pubstate = {published},
tppubtype = {article}
}
Barba, Anna Angela; Dalmoro, Annalisa; D'Amore, Matteo; Vascello, Clara; Lamberti, Gaetano
Biocompatible nano-micro-particles by solvent evaporation from multiple emulsions technique Journal Article
In: Journal of Materials Science, vol. 49, no 14, pp. 5160–5170, 2014, ISSN: 0022-2461.
Abstract | Links | BibTeX | Tags: Micro and Nano Vectors
@article{Barba2014c,
title = {Biocompatible nano-micro-particles by solvent evaporation from multiple emulsions technique},
author = { Anna Angela Barba and Annalisa Dalmoro and Matteo D'Amore and Clara Vascello and Gaetano Lamberti},
url = {http://link.springer.com/10.1007/s10853-014-8224-1},
doi = {10.1007/s10853-014-8224-1},
issn = {0022-2461},
year = {2014},
date = {2014-01-01},
journal = {Journal of Materials Science},
volume = {49},
number = {14},
pages = {5160--5170},
publisher = {Springer US},
abstract = {In this study, a method based on a multiple emulsions system was developed for the production of polymeric nano and micro-vectors. The possibility to apply an unified preparation technique to different polymers, such as polyesters [polycaprolactone, poly-dl-lactide, poly(dl-lactide-co-caprolactone) = 70/30] and polyacrylates [poly(methylmethacrylate\textendashacrylic acid) = 73/27], loaded with different model molecules (budesonide, tamoxifen, and $alpha$-tocopherol) was explored. After selecting the best operating conditions, especially for emulsification and separation, the technique proved to be readily adaptable for production of both nano and micro-particles with different morphologies, depending on type of polymer, and consequently on solvent used for solubilization: nano-particles, with a round shape and a smooth surface, for polyesters, otherwise micro-particles for the polyacrylate polymer, owing to the presence of hydrophilic co-solvents, that caused both an easy coalescence between the oil and water phases, thus enlarged particles size, and a high porosity. Even the yield of encapsulation was influenced by the presence of hydrophilic co-solvents, causing a higher yield for nano-vectors. Polyesters-based nano-vectors showed release times of molecules, linked to their degradation time, higher than 8 months that make them useful to formulate injectable or implantable drug delivery systems. Polyacrylate-based micro-vectors showed an enteric behavior, interesting for designing solid pharmaceutical formulations for oral delivery. Therefore, the technique demonstrated to assure a broad application in drug delivery research.},
keywords = {Micro and Nano Vectors},
pubstate = {published},
tppubtype = {article}
}
Barba, Anna Angela; Bochicchio, Sabrina; Lamberti, Gaetano; Dalmoro, Annalisa
Ultrasonic energy in liposome production: process modelling and size calculation Journal Article
In: Soft Matter, vol. 10, no 15, pp. 2574, 2014, ISSN: 1744-683X.
Abstract | Links | BibTeX | Tags: Micro and Nano Vectors
@article{Barba2014a,
title = {Ultrasonic energy in liposome production: process modelling and size calculation},
author = { Anna Angela Barba and Sabrina Bochicchio and Gaetano Lamberti and Annalisa Dalmoro},
url = {http://xlink.rsc.org/?DOI=c3sm52879k},
doi = {10.1039/c3sm52879k},
issn = {1744-683X},
year = {2014},
date = {2014-01-01},
journal = {Soft Matter},
volume = {10},
number = {15},
pages = {2574},
publisher = {The Royal Society of Chemistry},
abstract = {The use of liposomes in several fields of biotechnology, as well as in pharmaceutical and food sciences is continuously increasing. Liposomes can be used as carriers for drugs and other active molecules. Among other characteristics, one of the main features relevant to their target applications is the liposome size. The size of liposomes, which is determined during the production process, decreases due to the addition of energy. The energy is used to break the lipid bilayer into smaller pieces, then these pieces close themselves in spherical structures. In this work, the mechanisms of rupture of the lipid bilayer and the formation of spheres were modelled, accounting for how the energy, supplied by ultrasonic radiation, is stored within the layers, as the elastic energy due to the curvature and as the tension energy due to the edge, and to account for the kinetics of the bending phenomenon. An algorithm to solve the model equations was designed and the relative calculation code was written. A dedicated preparation protocol, which involves active periods during which the energy is supplied and passive periods during which the energy supply is set to zero, was defined and applied. The model predictions compare well with the experimental results, by using the energy supply rate and the time constant as fitting parameters. Working with liposomes of different sizes as the starting point of the experiments, the key parameter is the ratio between the energy supply rate and the initial surface area.},
keywords = {Micro and Nano Vectors},
pubstate = {published},
tppubtype = {article}
}
2013
Dalmoro, Annalisa; Barba, Anna Angela; D'Amore, Matteo
Analysis of Size Correlations for Microdroplets Produced by Ultrasonic Atomization Journal Article
In: The Scientific World Journal, vol. 2013, pp. 1–7, 2013, ISSN: 1537-744X.
Abstract | Links | BibTeX | Tags: Micro and Nano Vectors
@article{author,
title = {Analysis of Size Correlations for Microdroplets Produced by Ultrasonic Atomization},
author = { Annalisa Dalmoro and Anna Angela Barba and Matteo D'Amore},
url = {http://www.hindawi.com/journals/tswj/2013/482910/},
doi = {10.1155/2013/482910},
issn = {1537-744X},
year = {2013},
date = {2013-01-01},
journal = {The Scientific World Journal},
volume = {2013},
pages = {1--7},
abstract = {Microencapsulation techniques are widely applied in the field of pharmaceutical production to control drugs release in time and in physiological environments. Ultrasonic-assisted atomization is a new technique to produce microencapsulated systems by a mechanical approach. Interest in this technique is due to the advantages evidenceable (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) when comparing it to more conventional techniques. In this paper, the groundwork of atomization is introduced, the role of relevant parameters in ultrasonic atomization mechanism is discussed, and correlations to predict droplets size starting from process parameters and material properties are presented and tested.},
keywords = {Micro and Nano Vectors},
pubstate = {published},
tppubtype = {article}
}
Dalmoro, Annalisa; D'Amore, Matteo; Barba, Anna Angela
Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization. Journal Article
In: Translational medicine @ UniSa, vol. 7, no 2, pp. 6–11, 2013, ISSN: 2239-9747.
Abstract | Links | BibTeX | Tags: dimensionless, Micro and Nano Vectors, microparticles size prediction, numbers in atomization, ultrasonic atomization
@article{Dalmoro2013,
title = {Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization.},
author = { Annalisa Dalmoro and Matteo D'Amore and Anna Angela Barba},
url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3829785\&tool=pmcentrez\&rendertype=abstract},
issn = {2239-9747},
year = {2013},
date = {2013-01-01},
journal = {Translational medicine @ UniSa},
volume = {7},
number = {2},
pages = {6--11},
publisher = {Universit},
abstract = {Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented.},
keywords = {dimensionless, Micro and Nano Vectors, microparticles size prediction, numbers in atomization, ultrasonic atomization},
pubstate = {published},
tppubtype = {article}
}
Lavori in atti di convegno internazionali
Read MoreSpiacente nessuna pubblicazione corrispondente ai criteri di ricerca
Disseminazione
I meeting 5-6 febbraio 2013 – Trieste
Scarica la locandina: I meeting PRIN
II meeting 27-29 settembre 2013 – Palermo
Programma:
Scarica la locandina: II meeting PRIN
III meeting 20-21 giugno 2014 – Ustica
Scarica la locandina: III meeting PRIN
IV meeting 2-3 febbraio 2015 – Milano
Programma:
Scarica la locandina: IV meeting PRIN
V meeting 14-15 settembre 2015 – Salerno
Vai alla pagina dedicata: Workshop – Nuovi sviluppi della terapia genica
Programma:
Scarica la locandina: V meeting PRIN
VI meeting 24-25 Maggio 2016 – Trieste
Locandina e programma:
Scarica la locandina: VI meeting PRIN