Sabrina Bochicchio
Full CV (request the password via email)
Theses
PhD thesis
- Sabrina Bochicchio, Nanostructured vectors for the transport of active molecules through biological membranes for pharmaceutical and nutraceutical applications, PhD in Industrial Engineering at University of Salerno, Supervisor: Prof. Ing. Anna Angela Barba, Scientific Committee: Prof. Sotiris Missailidis (Instituto Oswaldo Cruz, Brasil, Open University, UK), Prof. Gabriele Grassi (University Hospital of Cattinara, Trieste), Prof. Gaetano Lamberti (Università degli Studi di Salerno
Publications
2021
Bochicchio, Sabrina; Lamberti, Gaetano; Barba, Anna Angela
Polymer–Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies Journal Article
In: Pharmaceutics, vol. 13(2), no. 198, pp. 15, 2021, ISSN: 19994923.
Abstract | Links | BibTeX | Tags: drug delivery, hybrid nanoparticles, lipids, nanotechnologies, polymers, production technologies
@article{Bochicchio2021,
title = {Polymer\textendashLipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies},
author = {Sabrina Bochicchio and Gaetano Lamberti and Anna Angela Barba},
editor = {Thomas Rades},
url = {https://www.mdpi.com/1999-4923/13/2/198/htm},
doi = {10.3390/pharmaceutics13020198},
issn = {19994923},
year = {2021},
date = {2021-02-02},
journal = {Pharmaceutics},
volume = {13(2)},
number = {198},
pages = {15},
abstract = {Some issues in pharmaceutical therapies such as instability, poor membrane permeability, and bioavailability of drugs can be solved by the design of suitable delivery systems based on the combination of two pillar classes of ingredients: polymers and lipids. At the same time, modern technologies are required to overcome production limitations (low productivity, high energy consumption, expensive setup, long process times) to pass at the industrial level. In this paper, a summary of applications of polymeric and lipid materials combined as nanostructures (hybrid nanocarriers) is reported. Then, recent techniques adopted in the production of hybrid nanoparticles are discussed, highlighting limitations still present that hold back the industrial implementation. },
keywords = {drug delivery, hybrid nanoparticles, lipids, nanotechnologies, polymers, production technologies},
pubstate = {published},
tppubtype = {article}
}
2020
Bochicchio, Sabrina; Dalmoro, Annalisa; Lamberti, Gaetano; Barba, Anna Angela
Advances in Nanoliposomes Production for Ferrous Sulfate Delivery Journal Article
In: Pharmaceutics, vol. 12, no. 5, pp. 445, 2020.
Abstract | Links | BibTeX | Tags: drug delivery, ferrous sulfate, nanoliposome, simil-microfluidic apparatus, sonication
@article{Bochicchio2020b,
title = {Advances in Nanoliposomes Production for Ferrous Sulfate Delivery},
author = {Sabrina Bochicchio and Annalisa Dalmoro and Gaetano Lamberti and Anna Angela Barba},
editor = {MDPI},
url = {https://www.mdpi.com/1999-4923/12/5/445/pdf},
doi = {10.3390/pharmaceutics12050445},
year = {2020},
date = {2020-05-11},
journal = {Pharmaceutics},
volume = {12},
number = {5},
pages = {445},
abstract = {In this study, a continuous bench scale apparatus based on microfluidic fluid dynamic principles was used in the production of ferrous sulfate-nanoliposomes for pharmaceutical/nutraceutical applications, optimizing their formulation with respect to the products already present on the market. After an evaluation of its fluid dynamic nature, the simil-microfluidic (SMF) apparatus was first used to study the effects of the adopted process parameters on vesicles dimensional features by using ultrasonic energy to enhance liposomes homogenization. Subsequently, iron-nanoliposomes were produced at different weight ratios of ferrous sulfate to the total formulation components (0.06, 0.035, 0.02, and 0.01 w/w) achieving, by using the 0.01 w/w, vesicles of about 80 nm, with an encapsulation efficiency higher than 97%, an optimal short- and long-term stability, and an excellent bioavailability in Caco-2 cell line. Moreover, a comparison realized between the SMF method and two more conventional production techniques showed that by using the SMF setup the process time was drastically reduced, and the process yield increased, achieving a massive nanoliposomes production. Finally, duty-cycle sonication was detected to be a scalable technique for vesicles homogenization. },
keywords = {drug delivery, ferrous sulfate, nanoliposome, simil-microfluidic apparatus, sonication},
pubstate = {published},
tppubtype = {article}
}
Barba, Anna Angela; Dalmoro, Annalisa; Bochicchio, Sabrina; Simone, Veronica De; Caccavo, Diego; Iannone, Marco; Lamberti, Gaetano
Engineering approaches for drug delivery systems production and characterization Journal Article
In: International Journal of Pharmaceutics, 2020.
Abstract | Links | BibTeX | Tags: drug delivery, Hydrogel, Innovation in Europe, Microvectors, Modeling, Nanovectors
@article{Barba2020,
title = {Engineering approaches for drug delivery systems production and characterization},
author = {Anna Angela Barba and Annalisa Dalmoro and Sabrina Bochicchio and Veronica De Simone and Diego Caccavo and Marco Iannone and Gaetano Lamberti},
url = {https://www.sciencedirect.com/science/article/pii/S0378517320302519},
doi = {10.1016/j.ijpharm.2020.119267},
year = {2020},
date = {2020-03-31},
journal = {International Journal of Pharmaceutics},
abstract = {To find and to test the therapeutic effectiveness (and the limited adverse effects) of a new drug is a long and expensive process. It has been estimated a period of ten years and an expense of the order of one billion USD are required. Meanwhile, even if a promising molecule has been identified, there is the need for operative methods for its delivery. The extreme case is given by gene therapy, in which molecules with tremendous in-vitro efficacy cannot be used in practice because of the lack in useful vector systems to deliver them. Most of the recent efforts in pharmaceutical sciences are focused on the development of novel drug delivery systems (DDSs).
In this review, the work done recently on the development and testing of novel DDSs, with particular emphasis on the results obtained by European research, is summarized. In the first section of the review the DDSs are analyzed accordingly with their scale-size: starting from nano-scale (liposomes, nanoparticles), up to the micro-scale (microparticles), until the macroscopic world is reached (granules, matrix systems). In the following two sections, non-conventional testing methods (mechanical methods and bio-relevant dissolution methods) are presented; at last, the importance of mathematical modeling to describe drug release and related phenomena is reported.},
keywords = {drug delivery, Hydrogel, Innovation in Europe, Microvectors, Modeling, Nanovectors},
pubstate = {published},
tppubtype = {article}
}
In this review, the work done recently on the development and testing of novel DDSs, with particular emphasis on the results obtained by European research, is summarized. In the first section of the review the DDSs are analyzed accordingly with their scale-size: starting from nano-scale (liposomes, nanoparticles), up to the micro-scale (microparticles), until the macroscopic world is reached (granules, matrix systems). In the following two sections, non-conventional testing methods (mechanical methods and bio-relevant dissolution methods) are presented; at last, the importance of mathematical modeling to describe drug release and related phenomena is reported.