The publications of the members of the research group.
2024
Piano, Raffaella De; Caccavo, Diego; Cascone, Sara; Festa, Caterina; Lamberti, Gaetano; Barba, Anna Angela
Drug release from hydrogel-based matrix systems partially coated: experiments and modeling Journal Article
In: Journal of Drug Delivery Science and Technology, vol. 61, no. 102146, 2024, ISBN: 17732247.
Abstract | Links | BibTeX | Tags: drug release, Modeling, Tablets, Theophylline
@article{Piano}2024,
title = {Drug release from hydrogel-based matrix systems partially coated: experiments and modeling},
author = {Raffaella {De Piano} and Diego Caccavo and Sara Cascone and Caterina Festa and Gaetano Lamberti and Anna Angela Barba },
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092403044\&doi=10.1016%2fj.jddst.2020.102146\&partnerID=40\&md5=e519d84642480478a063b4c7b4e2832e},
doi = {10.1016/j.jddst.2020.102146},
isbn = {17732247},
year = {2024},
date = {2024-05-01},
journal = {Journal of Drug Delivery Science and Technology},
volume = {61},
number = {102146},
abstract = {Hydrogel-based matrix systems are largely used as controlled drug delivery systems, since it is possible to get the desired drug release profile properly designing the system in term of composition, drug loading and shape. Meanwhile, the mathematical modeling of the phenomena involved in the drug release process is a useful tool to understand and to predict the complex behavior of these systems, in term of water up-take, matrix swelling and erosion, drug diffusion and release. Furthermore, the coating of the matrix is used to provide certain characteristics such as enteric resistance, meanwhile making more complex the mathematical description of the process. In this work cylindrical tablets made of hydroxyl-propyl-methyl-cellulose (HPMC) loaded with theophylline (TP), as obtained or coated by an impermeable painting on the lateral surface were dissolved in a USP II apparatus, and the release of TP, as well as of HPMC and the shape changes were monitored in time, for several rotational speeds of the impeller. The experimental data gathered were used to tune a previously proposed mathematical model. The model was found able to correctly describe all the observed phenomena, confirming its usefulness as a tool in design and production of pharmaceutics.},
keywords = {drug release, Modeling, Tablets, Theophylline},
pubstate = {published},
tppubtype = {article}
}
2020
Piano, Raffaella De; Caccavo, Diego; Cascone, Sara; Festa, Caterina; Lamberti, Gaetano; Barba, Anna Angela
Drug release from hydrogel-based matrix systems partially coated: experiments and modeling Journal Article
In: Journal of Drug Delivery Science and Technology, 2020.
Abstract | Links | BibTeX | Tags: drug release, Modeling, Tablets, Theophylline
@article{Piano}2020,
title = {Drug release from hydrogel-based matrix systems partially coated: experiments and modeling},
author = {Raffaella {De Piano} and Diego Caccavo and Sara Cascone and Caterina Festa and Gaetano Lamberti and Anna Angela Barba},
url = {https://www.sciencedirect.com/science/article/abs/pii/S1773224720314350?via%3Dihub},
doi = {10.1016/j.jddst.2020.102146},
year = {2020},
date = {2020-10-07},
journal = {Journal of Drug Delivery Science and Technology},
abstract = {Hydrogel-based matrix systems are largely used as controlled drug delivery systems, since it is possible to get the desired drug release profile properly designing the system in term of composition, drug loading and shape. Meanwhile, the mathematical modeling of the phenomena involved in the drug release process is a useful tool to understand and to predict the complex behavior of these systems, in term of water up-take, matrix swelling and erosion, drug diffusion and release. Furthermore, the coating of the matrix is used to provide certain characteristics such as enteric resistance, meanwhile making more complex the mathematical description of the process. In this work cylindrical tablets made of hydroxyl-propyl-methyl-cellulose (HPMC) loaded with theophylline (TP), as obtained or coated by an impermeable painting on the lateral surface were dissolved in a USP II apparatus, and the release of TP, as well as of HPMC and the shape changes were monitored in time, for several rotational speeds of the impeller. The experimental data gathered were used to tune a previously proposed mathematical model. The model was found able to correctly describe all the observed phenomena, confirming its usefulness as a tool in design and production of pharmaceutics.},
keywords = {drug release, Modeling, Tablets, Theophylline},
pubstate = {published},
tppubtype = {article}
}
2012
Lamberti, Gaetano; Cascone, Sara; Iannaccone, Margherita; Titomanlio, Giuseppe
In vitro simulation of drug intestinal absorption. Journal Article
In: International journal of pharmaceutics, vol. 439, no. 1-2, pp. 165–8, 2012, ISSN: 1873-3476.
Abstract | Links | BibTeX | Tags: Controlled drug release, In vitro, Intestinal Absorption, Mass balance, Oral administration, Pharmacokinetics, Theophylline
@article{Lamberti2012d,
title = {In vitro simulation of drug intestinal absorption.},
author = { Gaetano Lamberti and Sara Cascone and Margherita Iannaccone and Giuseppe Titomanlio},
url = {http://www.sciencedirect.com/science/article/pii/S0378517312009520},
doi = {10.1016/j.ijpharm.2012.10.012},
issn = {1873-3476},
year = {2012},
date = {2012-12-01},
journal = {International journal of pharmaceutics},
volume = {439},
number = {1-2},
pages = {165--8},
abstract = {In this work, a simple set-up was designed, realized and tested to evaluate the effect of intestinal absorption on the in vitro drug release studies. The conventional USP-approved dissolution apparatus 2 was equipped with an hollow fibers filter, along with the necessary tubing and pumps, to simulate the two-fluids real behavior (the gastro intestinal lumen and the gastro intestinal circulatory system). The realized set-up was characterized in term of mass exchange characteristic, using the theophylline as the model drug, also with the aid of a simple mathematical model; then the release kinetics of a controlled release tablet was evaluated in the conventional test as well as in the novel simulator. The concentration of drug in the release compartment (which simulates the gastric lumen) was found lower in the novel simulator than in the traditional one.},
keywords = {Controlled drug release, In vitro, Intestinal Absorption, Mass balance, Oral administration, Pharmacokinetics, Theophylline},
pubstate = {published},
tppubtype = {article}
}
2009
Barba, Anna Angela; D'Amore, Matteo; Cascone, Sara; Chirico, Serafina; Lamberti, Gaetano; Titomanlio, Giuseppe
On the behavior of HPMC/Theophylline matrices for controlled drug delivery Journal Article
In: Journal of Pharmaceutical Sciences, vol. 98, no. 11, pp. 4100–4110, 2009, ISSN: 00223549.
Abstract | Links | BibTeX | Tags: Diffusion, drug release, HPMC, Hydrogel Characterization, swellable hydrogels, Theophylline
@article{Barba2009h,
title = {On the behavior of HPMC/Theophylline matrices for controlled drug delivery},
author = { Anna Angela Barba and Matteo D'Amore and Sara Cascone and Serafina Chirico and Gaetano Lamberti and Giuseppe Titomanlio},
url = {http://doi.wiley.com/10.1002/jps.21701},
doi = {10.1002/jps.21701},
issn = {00223549},
year = {2009},
date = {2009-11-01},
journal = {Journal of Pharmaceutical Sciences},
volume = {98},
number = {11},
pages = {4100--4110},
publisher = {Wiley Subscription Services, Inc., A Wiley Company},
abstract = {Design of systems for oral controlled release of drug could take advantages from the knowledge of which phenomena take place. In this work matrices obtained by powders compression (50:50, hydroxypropyl methylcellulose, a swelling hydrogel, and theophylline, a model drug) were immersed in water at 37 degrees C, allowing the water uptake and the drug release by lateral surface, confining the cylindrical matrices between glass slides. The tablets, after given immersion times, were withdrawn, cut in several annuli, and subsequently analyzed for the drug and the water concentration radial profiles. The data confirmed the pseudo-diffusive nature of the process, allowing to give a deep insight into the drug release process from swellable hydrogel matrices. In particular, it was confirmed the presence of nonhomogeneous gel layer, rich in water and poor in drug, with a profile of drug concentration which agrees well with a pseudo-diffusion phenomenon.},
keywords = {Diffusion, drug release, HPMC, Hydrogel Characterization, swellable hydrogels, Theophylline},
pubstate = {published},
tppubtype = {article}
}