The publications of the members of the research group.
2015
Cavallaro, Gennara; Craparo, Emanuela Fabiola; Sardo, Carla; Lamberti, Gaetano; Barba, Anna Angela; Dalmoro, Annalisa
PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions. Journal Article
In: International journal of pharmaceutics, vol. 495, no. 2, pp. 719-727, 2015, ISSN: 1873-3476.
Abstract | Links | BibTeX | Tags: Biopolymer, Micro and Nano Vectors, multiple emulsions, nanoparticles, solvent evaporation
@article{Cavallaro2015,
title = {PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.},
author = { Gennara Cavallaro and Emanuela Fabiola Craparo and Carla Sardo and Gaetano Lamberti and Anna Angela Barba and Annalisa Dalmoro},
url = {http://www.sciencedirect.com/science/article/pii/S0378517315302519},
doi = {10.1016/j.ijpharm.2015.09.050},
issn = {1873-3476},
year = {2015},
date = {2015-09-01},
journal = {International journal of pharmaceutics},
volume = {495},
number = {2},
pages = {719-727},
abstract = {Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the $alpha$,$beta$-poly(N-2-hydroxyethyl)-DL-aspartamide - polylactic acid (PHEA - PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with $alpha$ tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total $alpha$ tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi- long term release drug delivery systems.},
keywords = {Biopolymer, Micro and Nano Vectors, multiple emulsions, nanoparticles, solvent evaporation},
pubstate = {published},
tppubtype = {article}
}
Barba, Anna Angela; Lamberti, Gaetano; Sardo, Carla; Dapas, Barbara; Abrami, Michela; Grassi, Mario; Farra, Rossella; Tonon, F; Forte, Giancarlo; Musiani, F; Licciardi, M; Pozzato, G; Zanconati, F; Scaggiante, Bruna; Grassi, Gabriele; Cavallaro, Gennara
Novel Lipid and Polymeric Materials As Delivery Systems for Nucleic Acid Based Drugs. Journal Article
In: Current drug metabolism, vol. 16, no. 6, pp. 427-452, 2015, ISSN: 1389-2002.
Abstract | Links | BibTeX | Tags: Biopolymer, Drug Delivery Systems, liposome, Micro and Nano Vectors, nucleic acid based drugs
@article{Barba2015,
title = {Novel Lipid and Polymeric Materials As Delivery Systems for Nucleic Acid Based Drugs.},
author = { Anna Angela Barba and Gaetano Lamberti and Carla Sardo and Barbara Dapas and Michela Abrami and Mario Grassi and Rossella Farra and F Tonon and Giancarlo Forte and F Musiani and M Licciardi and G Pozzato and F Zanconati and Bruna Scaggiante and Gabriele Grassi and Gennara Cavallaro},
url = {http://benthamscience.com/journals/current-drug-metabolism/article/133927/},
doi = {10.2174/1389200216666150812142557},
issn = {1389-2002},
year = {2015},
date = {2015-01-01},
journal = {Current drug metabolism},
volume = {16},
number = {6},
pages = {427-452},
abstract = {Nucleic acid based drugs (NADBs) are short DNA/RNA molecules that include among others, antisense oligonucleotides, aptamers, small interfering RNAs and micro-interfering RNAs. Despite the different mechanisms of actions, NABDs have the ability to combat the effects of pathological gene expression in many experimental systems. Thus, nowadays, NABDs are considered to have a great therapeutic potential, possibly superior to that of available drugs. Unfortunately, however, the lack of effective delivery systems limits the practical use of NABDs. Due to their hydrophilic nature, NABDs cannot efficiently cross cellular membrane; in addition, they are subjected to fast degradation by cellular and extracellular nucleases. Together these aspects make the delivery of NABDs as naked molecules almost un-effective. To optimize NABD delivery, several solutions have been investigated. From the first attempts described in the beginning of the 1980s, a burst in the number of published papers occurred in the beginning of 1990s reaching a peak in 2012-13. The extensive amount of work performed so far clearly witnesses the interest of the scientific community in this topic. In the present review, we will concentrate on the description of the most interesting advances in the field. Particular emphasis will be put on polymeric and lipid materials used alone or in combination with a promising delivery strategy based on the use of carbon nanotubes. The data presented suggest that, although further improvements are required, we are not far from the identification of effective delivery systems for NABDs thus making the clinical use of these molecules closer to reality.},
keywords = {Biopolymer, Drug Delivery Systems, liposome, Micro and Nano Vectors, nucleic acid based drugs},
pubstate = {published},
tppubtype = {article}
}
2009
Barba, Anna Angela; D'Amore, Matteo; Cascone, Sara; Lamberti, Gaetano; Titomanlio, Giuseppe
Intensification of biopolymeric microparticles production by ultrasonic assisted atomization Journal Article
In: Chemical Engineering and Processing: Process Intensification, vol. 48, no. 10, pp. 1477–1483, 2009, ISSN: 02552701.
Abstract | Links | BibTeX | Tags: Biopolymer, Intensified ultrasonic atomization, Micro and Nano Vectors, Microparticles
@article{Barba2009g,
title = {Intensification of biopolymeric microparticles production by ultrasonic assisted atomization},
author = { Anna Angela Barba and Matteo D'Amore and Sara Cascone and Gaetano Lamberti and Giuseppe Titomanlio},
url = {http://www.sciencedirect.com/science/article/pii/S0255270109001524},
doi = {10.1016/j.cep.2009.08.004},
issn = {02552701},
year = {2009},
date = {2009-01-01},
journal = {Chemical Engineering and Processing: Process Intensification},
volume = {48},
number = {10},
pages = {1477--1483},
abstract = {In this work ultrasonic atomization process is applied to produce biopolymer microparticles with potential applications in pharmaceutical and nutraceutical fields. Natural polymer (alginate)/water solution is atomized by ultrasonic assisted process and the droplets spray is reticulated using a solution of copper sulfate, where the Cu2+ ions cause the formation of a network structure (hard porous gel). Several operating parameters (solution concentration, flow rate, atomization power) are changed to study their effects on the produced microparticles. Literature correlations able to predict the features of the droplets as functions of process parameters are optimized using a statistical approach. Furthermore, the energy requirement for the drops production is compared with the energy required by traditional techniques to evaluate the intensification effect of the ultrasonic on the atomization process.},
keywords = {Biopolymer, Intensified ultrasonic atomization, Micro and Nano Vectors, Microparticles},
pubstate = {published},
tppubtype = {article}
}