The publications of the members of the research group.
2023
Piano, Raffaella De; Caccavo, Diego; Barba, Anna Angela; Lamberti, Gaetano
Hydrogel: pH Role on Polyelectrolyte Behaviour in Aqueous Media Journal Article
In: Chemical Engineering Transactions, vol. 100, pp. 397-402, 2023, ISSN: 22839216.
Abstract | Links | BibTeX | Tags: Hydrogel, Polyelectrolyte Behaviour
@article{Piano}2023,
title = {Hydrogel: pH Role on Polyelectrolyte Behaviour in Aqueous Media},
author = {Raffaella {De Piano} and Diego Caccavo and Anna Angela Barba and Gaetano Lamberti},
doi = {10.3303/CET23100067},
issn = {22839216},
year = {2023},
date = {2023-06-30},
journal = {Chemical Engineering Transactions},
volume = {100},
pages = {397-402},
abstract = {Polyelectrolytes are a class of polymer whose swelling depends on the external condition of pH. The dissociation of the ionizable groups is strongly depended on the concentration of the H+ ions in solution and this leads to different swelling behaviour changing the external pH. Since these materials are versatile and used in various fields, an in-depth knowledge of their behaviour becomes important to use them appropriately. The present work aims to offer an overview of the behaviour of these materials in solution through an experimental and a steady state modelling part. The results serve as a fundamental basis to understand the behaviour of these systems, including transient periods, leading to a comprehensive and predictable description.},
keywords = {Hydrogel, Polyelectrolyte Behaviour},
pubstate = {published},
tppubtype = {article}
}
2020
Barba, Anna Angela; Dalmoro, Annalisa; Bochicchio, Sabrina; Simone, Veronica De; Caccavo, Diego; Iannone, Marco; Lamberti, Gaetano
Engineering approaches for drug delivery systems production and characterization Journal Article
In: International Journal of Pharmaceutics, 2020.
Abstract | Links | BibTeX | Tags: drug delivery, Hydrogel, Innovation in Europe, Microvectors, Modeling, Nanovectors
@article{Barba2020,
title = {Engineering approaches for drug delivery systems production and characterization},
author = {Anna Angela Barba and Annalisa Dalmoro and Sabrina Bochicchio and Veronica De Simone and Diego Caccavo and Marco Iannone and Gaetano Lamberti},
url = {https://www.sciencedirect.com/science/article/pii/S0378517320302519},
doi = {10.1016/j.ijpharm.2020.119267},
year = {2020},
date = {2020-03-31},
journal = {International Journal of Pharmaceutics},
abstract = {To find and to test the therapeutic effectiveness (and the limited adverse effects) of a new drug is a long and expensive process. It has been estimated a period of ten years and an expense of the order of one billion USD are required. Meanwhile, even if a promising molecule has been identified, there is the need for operative methods for its delivery. The extreme case is given by gene therapy, in which molecules with tremendous in-vitro efficacy cannot be used in practice because of the lack in useful vector systems to deliver them. Most of the recent efforts in pharmaceutical sciences are focused on the development of novel drug delivery systems (DDSs).
In this review, the work done recently on the development and testing of novel DDSs, with particular emphasis on the results obtained by European research, is summarized. In the first section of the review the DDSs are analyzed accordingly with their scale-size: starting from nano-scale (liposomes, nanoparticles), up to the micro-scale (microparticles), until the macroscopic world is reached (granules, matrix systems). In the following two sections, non-conventional testing methods (mechanical methods and bio-relevant dissolution methods) are presented; at last, the importance of mathematical modeling to describe drug release and related phenomena is reported.},
keywords = {drug delivery, Hydrogel, Innovation in Europe, Microvectors, Modeling, Nanovectors},
pubstate = {published},
tppubtype = {article}
}
In this review, the work done recently on the development and testing of novel DDSs, with particular emphasis on the results obtained by European research, is summarized. In the first section of the review the DDSs are analyzed accordingly with their scale-size: starting from nano-scale (liposomes, nanoparticles), up to the micro-scale (microparticles), until the macroscopic world is reached (granules, matrix systems). In the following two sections, non-conventional testing methods (mechanical methods and bio-relevant dissolution methods) are presented; at last, the importance of mathematical modeling to describe drug release and related phenomena is reported.