The publications of the members of the research group.
2015
Caccavo, Diego; Cascone, Sara; Lamberti, Gaetano; Barba, Anna Angela
Controlled drug release from hydrogel-based matrices: Experiments and modeling. Journal Article
In: International journal of pharmaceutics, vol. 486, no. 1-2, pp. 144–152, 2015, ISSN: 1873-3476.
Abstract | Links | BibTeX | Tags: Hydrogel Characterization, Hydrogel Modeling, Hydrogels, Modeling, Texture analysis, Transport phenomena, Water uptake
@article{Caccavo2015a,
title = {Controlled drug release from hydrogel-based matrices: Experiments and modeling.},
author = { Diego Caccavo and Sara Cascone and Gaetano Lamberti and Anna Angela Barba},
url = {http://www.sciencedirect.com/science/article/pii/S0378517315002707},
doi = {10.1016/j.ijpharm.2015.03.054},
issn = {1873-3476},
year = {2015},
date = {2015-03-01},
journal = {International journal of pharmaceutics},
volume = {486},
number = {1-2},
pages = {144--152},
abstract = {Controlled release by oral administration is mainly achieved by pharmaceuticals based on hydrogels. Once swallowed, a matrix made of hydrogels experiences water up-take, swelling, drug dissolution and diffusion, polymer erosion. The detailed understanding and quantification of such a complex behavior is a mandatory prerequisite to the design of novel pharmaceuticals for controlled oral delivery. In this work, the behavior of hydrogel-based matrices has been investigated by means of several experimental techniques previously pointed out (gravimetric, and based on texture analysis); and then all the observed features were mathematically described using a physical model, defined and recently improved by our research group (based on balance equations, rate equations and swelling predictions). The agreement between the huge set of experimental data and the detailed calculations by the model is good, confirming the validity of both the experimental and the theoretical approaches.},
keywords = {Hydrogel Characterization, Hydrogel Modeling, Hydrogels, Modeling, Texture analysis, Transport phenomena, Water uptake},
pubstate = {published},
tppubtype = {article}
}
2014
Cascone, Sara; Lamberti, Gaetano; Titomanlio, Giuseppe; D'Amore, Matteo; Barba, Anna Angela
Measurements of non-uniform water content in hydroxypropyl-methyl-cellulose based matrices via texture analysis Journal Article
In: Carbohydrate Polymers, vol. 103, pp. 348–354, 2014, ISSN: 01448617.
Abstract | Links | BibTeX | Tags: Hydrogel Characterization, Hydrogels, Texture analysis, Water content
@article{Cascone2014,
title = {Measurements of non-uniform water content in hydroxypropyl-methyl-cellulose based matrices via texture analysis},
author = { Sara Cascone and Gaetano Lamberti and Giuseppe Titomanlio and Matteo D'Amore and Anna Angela Barba},
url = {http://www.sciencedirect.com/science/article/pii/S0144861713012757},
doi = {10.1016/j.carbpol.2013.12.060},
issn = {01448617},
year = {2014},
date = {2014-03-01},
journal = {Carbohydrate Polymers},
volume = {103},
pages = {348--354},
abstract = {The use of hydrogels in the preparation of controlled release pharmaceutical forms is extensively diffused. The main feature of these polymers is their ability to swell forming a gel layer when they enter in contact with fluids. Once the gel layer is formed, the drug contained in the matrix can easily diffuse ensuring a controlled release from the tablet. Measurement of water content within a hydrating matrix based on hydrogels is a key topic in the study of pharmaceutical solid dosage forms. The aim of this work is to evaluate the water content of swollen matrices composed by HPMC and theophylline both in axial and in radial direction, as a function of time, using a texture analysis. A relationship between water content and slope of the force\textendashpenetration curves has been obtained using a simplified system in which the water uptake is allowed only in radial direction, obtaining thus partially hydrated matrices with the water content varying only along the radial direction. Once the relationship has been validated, it has been applied in a more complex system in which the polymer swelling takes place in both axial and radial direction. Thus, using the texture analysis it has been possible to determine the water in each position within the hydrated matrices.},
keywords = {Hydrogel Characterization, Hydrogels, Texture analysis, Water content},
pubstate = {published},
tppubtype = {article}
}
2013
Lamberti, Gaetano; Cascone, Sara; Cafaro, Maria Margherita; Titomanlio, Giuseppe; D'Amore, Matteo; Barba, Anna Angela
Measurements of water content in hydroxypropyl-methyl-cellulose based hydrogels via texture analysis. Journal Article
In: Carbohydrate polymers, vol. 92, no. 1, pp. 765–8, 2013, ISSN: 1879-1344.
Abstract | Links | BibTeX | Tags: HPMC, Hydrogel Characterization, Texture analysis, Water content
@article{Lamberti2013a,
title = {Measurements of water content in hydroxypropyl-methyl-cellulose based hydrogels via texture analysis.},
author = { Gaetano Lamberti and Sara Cascone and Maria Margherita Cafaro and Giuseppe Titomanlio and Matteo D'Amore and Anna Angela Barba},
url = {http://www.sciencedirect.com/science/article/pii/S0144861712010193},
doi = {10.1016/j.carbpol.2012.10.003},
issn = {1879-1344},
year = {2013},
date = {2013-01-01},
journal = {Carbohydrate polymers},
volume = {92},
number = {1},
pages = {765--8},
abstract = {In this work, a fast and accurate method to evaluate the water content in a cellulose derivative-based matrix subjected to controlled hydration was proposed and tuned. The method is based on the evaluation of the work of penetration required in the needle compression test. The work of penetration was successfully related to the hydrogel water content, assayed by a gravimetric technique. Moreover, a fitting model was proposed to correlate the two variables (the water content and the work of penetration). The availability of a reliable tool is useful both in the quantification of the water uptake phenomena, both in the management of the testing processes of novel pharmaceutical solid dosage forms.},
keywords = {HPMC, Hydrogel Characterization, Texture analysis, Water content},
pubstate = {published},
tppubtype = {article}
}